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0.- Abstract

The stability of the experimental and accelerabontlations are one of the major importance
on 3rd generation synchrotron light sources. Aitktestudy of the site for the Synchrotron
light facility ALBA including, geotechnical charaaization method and results, experimental
setup for on-line long term soil monitoring andulés, vibrations analysis results and the
solution adopted for the foundations of the bearadiand complex of accelerators critical
floor area based were presented at MEDSI 2006r Aftecution of the civil engineering
works the results on the vibrations behavior diaal floor area are presented in detail.

1.- Introduction

The Consortium for the Construction, Equipping &gbloitation of the Synchrotron Light
Laboratory (CELLS —-www.cells.e3, it is co-financed by the Spanish and the Catalan
governments and its aim is to be responsible ofiteeSynchrotron Light Source Facility to
be built in Spain, which name is ALBA.

ALBA is a 3 GeV complex that will consist of a 1MV electron linear accelerator followed

by a 3 GeV booster synchrotron and finally the 3/Georage ring where eventually a beam
of 400 mA will circulate while at the beamlines thaentists will perform their experiments.

ALBA will use the so-called top-up injection modie, which the current is kept almost

constant in the storage ring by injecting curreagsmall as 1 mA every few minutes. In this
case all elements of the Storage Ring and moreriauptily the beamline optical components
will operate under a constant heat load to enstwpep stability of the beam at the sample
position.

In this context, the building must be subservienthie technical and scientific necessities as
well as accomplish requirements formulated by ase#bdrs and experimental divisions.

! dcarles@cells.esndmiralles@cells.es
2 CELLS — ALBA - Edifici Ciéncies Nord - Modul C-2ntral - Campus Universitari de Bellaterra - Ursitat
Autonoma de Barcelona - 08193 Bellaterra, Barcel@ain http://www.cells.es




Structural stability of the critical floor area wase of the central and crucial parts of the
Executive Building Project.

Along 2004, geotechnical investigations ordered GfLLS started at the selected
construction site of ALBA.

Ground vibration measurements at the proposed AsB& were carried out by Desy group
specialized in detailed study of the vibrationseasp for synchrotrons lights sources at the
end of 2004.

The Basic Project for the construction of the buid and urbanization of external spaces
was approved after an international review in Seper 2005. The Executive Project was
completed last in February 2006.

The civil engineering works started on"2@ay 2006.

2.- Vibrations requirements on critical floor area

The critical floor slab has an outer radius of 6@mna the inner edge is defined by the inner
wall of the experimental line plus a minimum excksgth of 30 cm. On the other hand, the
inner edge is also defined by the layout of thekddements of the false floor. The Critical
Floor slab supports along its inner part the ALBAnRel with the experimental line and
along its outer part the service area for the siigies. The width of the critical floor varies
between 22 m and 29 m at the Linac. To avoid tiesmission of vibrations from outside to
the critical floor area, the slab has completelgrbdisconnected and isolated from all other
structures.

L oads and requirements

Loads acting on the critical floor slab and limibats of differential floor slab displacements
as well as vibrations requirements are summarizeidw.

Circular ringin which requirements are applied
Inner diameter 60 m aprox.
Outer diameter 120 m

Chargeson thecircular ring

Total static charge 10.000 Tm
Distributed static charge 1,5Tm/m
Maximum charge on a point 5Tm/nf
Dynamic charge 2Tm

Floor differential displacements

< 0.25 mm/10 m/ year
< 0.05 mm/10 m/month
< 10 um/10 m/ day

< 1 um/10 m/ hour
Maximum differential displacement over the wholeipeter < 2.5 mm/ year

Slow relative displacements




Floor deformability because of charges On the application point At2m

Static charge of 500 kg 6 um lum

Dynamic charge of 100 kg 1um

Vibrations

. . <4 F 0.05-1H

Vertical amplitudes Hm rom z
< 0.4 pm From 1 —100 Hz

Horizontal amplitudes 2 um

Table 1. Loads and requirements on the criticabflarea

These necessities and requirements are incorpomtéue final solution adopted for the

critical floor area.

3.- Critical Floor area foundations solution

Design

Figures below are showing part of the ALBA buildiegecutive project were we can see a
cross section of the buildings and the top viewhefcritical floor area.
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Cross section of the ALBA buildings
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Top view of the critical floor area with the wali§the ALBA tunnel and the sectors of the
slab

The detailed design of the critical floor slab tmk&to account the effect of differential subsaoil
movements as described above and the effect atakhbads, acting on the test slab (dead
weights and live loads).

The solution projected for the critical slab flamea of the ALBA Synchrotron Light Source
consists in 1 meter thickness concrete slab, stggbon a 2 metres thickness treatment soil.

This underlayer will consist in a refill of 1,70 tees of selected gravel (20 to 40 mm
diaameter) homogenously and conveniently compautetected by two layers of 0,15 meters
of poor concrete, on the top and the bottom (sachiwiode) of this gravel.
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Cross section of the solution for the critical ft@rea

Construction Stages

The whole test plate, which has been divided ifte@gments, will be produced one by one.
The area of the single elements has been chosertina way that the corresponding concrete
volume can be poured in one day and the correspgmddrk properly be guaranteed.

Construction joints to be vertical with shutteritpards (or similar) and longitudinal
reinforcement bars going through the shutteringfe®e retarder will be applied to the
shuttering prior to pouring. Immediately the fornmwas removed, concrete surface will be
washed off with a strong water jet to expose thgregates.

After-treatment of the exposed concrete surfacenduat least the first week after pouring
will be applied to avoid a desiccation of the soefaCould be curing or better covering the
slab with plastic or insulating foils.

The time gap between pouring two adjacent elensrdl be at least one week (hardening of
the prior poured element).

4. Ground vibration measurements at ALBA site

The ground vibration measurements at ALBA site dfsoen 5" to 7" May 2008 by Desy
group were made using Gduralp tri-axial digital ®réeedback broadband seismometers
CMG-6TD.



These seismometers measure the ground accelematiar is integrated internally. The
CMG-6TD seismic sensors are hermetically sealegetlais devices with an internal 24 bit
digitizer and a seismometer constantGgf= 2 kV/m/s. The resolution of the instruments is
about 0.09 nm/bit @ 1 Hz, which is sufficient teatve the power spectra even at medium
noise sites.

The ground vibration was measured on 2 campaigsitted on the following table.

DATE/CASE POSITION OBSERVATIONS

5™ May 2008/ 1 Warehouse Cultural noise, factory,
jackhammer, truck

6" May 2008/ 2 ALBA building Cultural noise, factory,
jackhammer, truck

The ceramics factory activities schedule was

MILL 2 MILL 3
DATE ON OFF ON OFF
5'" May 2008 7:00 | 9:30 13:00 20:45
10:15] 13:30 22:00 5:20
6" May 2008 | 6:05 [ 9:30 14:30 20:45
10:15] 13:30 22:00 5:20
14:09( 18:30
19:05( 19:33
22:07| 1:45

The sensors and the computer were powered by thes mofthe site via long cables.



Casel

The position of the sensors is described on tHeviiahg graphic

Warehouse, traffic at St. Cugat Rd.

Difference between traffic at 17:50 and at midnj@@t05 (15 minute averages):
@ 1 Hz, 79 nm vs. 20 nm respectively. 12 Hz, 1624zHz lines are seen in the midnight
spectra, most probably due to motors running ircéramic factory.
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However, as seen from 1 minute files, instantan@austion can be substantial;
For example, at 17:56 a 2.6 Hz bump due to trafficlHz 123 nm, is recorded.
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Or at 20:44, two bumps at 6 & 10 Hz are visiblendi @ 1 Hz (Fig. 3). The next minute

Fig. 2

(20:45), this value falls down to 24 nm and the puah10 Hz vanishes (Fig. 4).
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Fig. 4




Slab, traffic at St. Cugat Rd. only

The slab registers the traffic as it is low frequenoise, but the amplitudes are lower.
However, there are instantaneous fluctuationsefample at 20:47, 67 nm at 1 Hz is
registered and a very clear bump at 6 Hz, dueaftidrin St. Cugat Rd. is seen (Fig. 5). At
20:50, no traffic signal is observed, 40 nm @ 1(Fig. 6). Lines at 12 Hz & 16 Hz are due to
motors running at a factory nearby.
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Warehouse, traffic simulated by the truck.

Truck driving on the road nearby the warehousedsirulate the traffic in the late
afternoon. Traffic at 17:50 @ 1 Hz is 79 nm compaséth truck at 21:57 which is 69 nm at
this frequency region.
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Fig. 7

Minute-by-minute fluctuations are larger. For exdenpt 21:39, 85 nm @ 1 Hz was
measured (Fig. 8). The very next minute, 21:4@, ¥lailue drops to 29 nm (Fig. 9). The bump
at 2.5 is due to the truck. During day time, thfe@ will be much more severe.
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Slab, traffic simulated by truck

Smaller amplitude of vertical vibration is regigtdras the truck drives on the dirt road
besides the warehouse compared to the warehouselves lines @ 16 and 24 Hz are
however detected on the slab which are due to #tensof the factory nearby. @ 1 Hz, the
slab registers a movement of 37 nm at 21:20, amaviire house 68 nm at 21:27 (15 minutes

average files).
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Comparison of amplitudes of vibration caused bkl@mmer nearby the warehouse and on
the ALBA slab

The slab dampens all high frequency componentsrgteby the jack hammer. For
example, at 23:27, the vertical vibration amplit@el Hz is 81 nm measured in the
warehouse and only 44 nm on the slab (Fig. 11).
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Case 2

The position of the sensors is described on tHevihg graphic

Comparison of amplitudes of vibration caused bkl@mmer nearby the ‘normal’ slab
corridor and on the ALBA slab

Difference between ‘normal’ and the ‘critical’ skabA jackhammer was used to generate high
frequency noise (> 10 Hz). Many peaks are seei, a8, 22, 33, 44, 55, 68 Hz which are
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due to jackhammer, plus the lines at 15, 16, 1812@due to mills and motors of the ceramic
factory. However, @ 1Hz, 41 nm of vibration is s#gred on the critical slab compared with
135 nm on the normal slab at similar times ~ 2373 critical slab seems to dampen high

frequency technical noise.
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Effect of normal traffic

A comparison of 15 minute average files taken a®@2@or the critical slab and 20:07 at the
corridor, shows that yet again, the ALBA slab danmgpkigh frequency noise, but the low
frequency noise, e.g. Due to traffic is not affdci@ 1 Hz, the amplitude measured for the
critical slab is 54 nm, and at the corridor, 64 (kig. 13).
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Effect of noise caused by the truck driving on rth@d nearby the corridor

A similar result to the previous section is obtadiméhen traffic is simulated on the road
nearby the critical slab (West) and the corridag. E4 shows a 15 minute average taken for
the normal slab at the corridor taken at 22:33fanthe ALBA slab at 22:34. @ 1 Hz, the
amplitude of the vibration is 65 nm and 52 nm resipely.
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4.- Summary

The vibrations response of the ALBA critical floarea has been measured. The cultural
noise around the site has been characterized sitel/éls measured.

The foundations solution adopted has displacemempthg effect when increasing the
frequencies of the excitations reaching up to &fa2,5 . At low frequencies no duping effect
is detected.

The level of cultural noise at the side is sigmifitand confirms the first results obtained on
the 2004 measurements campaign. However, the dgnedfect reduces the typical peaks
around 125 nm detected outside the critical flaeaao around 50 nm on the critical floor
area slab.

Provisions in order to decrease the effect of tlafi¢ on the roads around the site are

desirable. Recommendations have been passed swutherities responsible of the execution
of the urbanization works around the site to miaenthe effects of the traffic.

14



Acknowledgement

We are very grateful A.Perdrix, A.Fernandez, Llliéla and J.A, Del Pimo from Master
Engineering; R. Amirika, A. Bertolini and W.Bialows from DESY, F.X.Magrans from

ICR, for their interest supporting the civil engenmg group at CELLS and all our colleagues
of CELLS.

15



